
A High Speed Feature Matching Architecture for
Real-time Video Stabilization

Keng-Yen Huang, Yi-Min Tsai, Tien-Ju Yang, and Liang-Gee Chen
DSP/IC Lab, Graduate Institute of Electronic Engineering

National Taiwan University, Taiwan
{kyhuang,ymtsai,denru,lgchen}@video.ee.ntu.edu.tw

Abstract— An efficient feature matching architecture targets
at real-time video stabilization is revealed in this paper. For
some applications, such as vehicular application, real-time video
stabilization is needed to provide instant stable video input.
However, feature matching is usually the bottleneck to achieve
high performance. High speed feature matching architecture is
proposed to accelerate the performance of video stabilization.
Locality sensitive hashing (LSH) helps us realize the feature
matching procedure in hardware implementation. By applying
the proposed dynamic table allocation and on-chip cache mech-
anism, this work achieves 422K queries/s and real-time feature
matching with 90% in memory reduction and more than 50%
in relieving the feature bus burden of the system.

I. INTRODUCTION

Video camera becomes smaller and eventually portable in
many applications. As a result, more smart video sensors
will be placed around to bring about a more convenient
life. However, the captured video may be blurred and shaky
owing to unstable camera platforms. This not only results in
uncomfortable watching experience but also introduces severe
artifact to back-end applications. Therefore, many real-time
applications need on-the-fly video stabilization to provide
steady video inputs.

The basic idea of video stabilization is to correctly estimate
the camera movement and to determine which part of the
movement is undesired. Existing video stabilization algorithms
are roughly classified into three major categories, special-
image-structure-based, block-motion-based, and feature-based
methods:
• Special-image-structure-based method. Utilizing the im-
age structure or prior knowledge to fix the unstable video.
This kind of idea has been commonly adopted in vehicular
applications. Liang [1] proposed a stabilization mechanism
based on fixing the position and slope of lane lines. However,
the requirement for image clearance for traits makes this
method hard to maintain robust performance under various
scenarios.
• Block-motion-based method. This category is the most
widely employed approach. Through dividing the image into
blocks and calculating the block movements across consec-
utive frames, the image motion can be estimated [2], [3].
Generally speaking, large number of block motions guarantees
a consistent stabilization result, but it usually implies time-
consuming computation.
• Feature-based method. For reducing the weighty computa-

Feature 

Extraction

Feature Pool

Feature 

Matching

Input Video

Current Frame

Previous Frame

Store features 

into feature pool

Camera Motion 

Estimation

Stabilized 

Video

Motion 

Compensation
Feature 

motion 

vector

Fig. 1. Block diagram of the feature-based video stabilization system.

tion for calculating all block motion vectors, recent researches
focus on interested points that are regarded as some corners
or features. Feature motion vectors are calculated for global
motion estimation [4], [5]. Feature-based methods guarantee
a more reliable solution for video stabilization.

However, even with reduced interested feature points, cur-
rent feature-based methods still can not meet real-time re-
quirement through CPU implementation, especially for a high
resolution video input. The bottleneck is the feature matching
stage. In order to real-time video stabilization can be achieved,
an efficient feature matching engine is required. Previous
literature tries to adopt a processor or a RISC to accelerate the
matching procedure [6], but the result shows that it can only
support small number of features. In this paper, a high speed
feature matching architecture is proposed. Firstly, optimized
hardware for locality sensitive hashing (LSH) [7] reduces the
computational complexity for matching features. Secondly,
applying on-chip cache to minimize the bus usage. The result
shows that our system provides fast feature matching flow and
further assist real-time video stabilization under high video
resolution.

This paper is organized as follows. The basic feature-based
video stabilization algorithm is described in Sec. II. Feature
matching method is deeply discussed in Sec. III Sec. IV reveals
the proposed architecture. Architecture analysis is presented in
Sec. V and Sec. VI concludes this work.

II. FEATURE-BASED VIDEO STABILIZATION ALGORITHM

Based on the previous work [8], Fig. 1 illustrates the block
diagram of the feature-based video stabilization system. Input
video is first processed to extract those potentially interested
feature points. Each feature is represented by a feature descrip-
tion. Secondly, we find the corresponding position for every
extracted feature by probing the feature pool. The matched



54.2%

25.1%

20.7%

Feature Extraction 

and Matching 

Camera Motion 

Estimation

Moiton Compensation

Fig. 2. Timing analysis for the feature-based video stabilization algorithm.

pairs are collected to estimate the camera motion and to
compensate the unwanted camera movement.

From the timing analysis illustrated in Fig. 2, we observe
that more than half of computation time is spent on feature
extraction and feature matching. In the feature extraction
and matching step, matching features is much more difficult
when the feature pool is too large for a feature to find its
corresponding point. This causes frequent memory access to
the off-chip memory. Thus, we present a searching scheme for
achieving efficient matching in a large feature pool.

III. FEATURE MATCHING VIA LSH
Most techniques adopt traversing the tree-structure feature

pool such as KD-tree to search for the most possible feature
candidates. However, when the feature dimension is above
about 20, the tree based search methods do not yield any
performance improvement over brute force methods [9], as in
the case of our algorithm, a 64-dimension SURF descriptor.

Approximate methods, such as LSH, can dramatically re-
duce the computational complexity. The idea of LSH is shown
in Fig. 3. Traditional hashing tries to spread out the features
into buckets randomly to achieve that each bucket contains
just a few features. In LSH, the basic motivation is to spread
out in the buckets while preserving the spatial relationships
between features. Through utilizing the locality information,
we can search the corresponding feature in the feature pool
by examining all its neighboring buckets.

In order to maintain the spatial information, given a feature
vector V , the hashing function ha,b is depicted in Eq. 1:

ha,b(V ) = ba · V + b

r
c (1)

where a is a n dimensional vector with entries chosen inde-
pendently from Stable distribution. The parameter b is a real
number chosen uniformly from the range [0, r], in which r
represents the maximum value of a single hash index. The
ha,b maps a n dimensional vector V onto a set of integers.
Through selecting k sets of hashing functions, we can combine
these single hash indexes into a final LSH index function gi

as shown in Eq. 2

gi = {ha1,b1 , ha2,b2 , · · · , hak,bk
} (2)

The resulting index function guarantees the probability of
finding the most similar feature in the neighboring indexes

(a) (b)

Feature

Hash Bucekt

General Hashing Locality Sensitive Hahsing

Fig. 3. Two hashing methods. (a) General hashing randomly select the
assigned bucket. (b) Despite the random assigning, locality sensitive hashing
preserves the spacial information.

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

Hash index Hash Table

LSH 

Functions

ig
LSH 

Functions

ig
LSH 

Functions

ig

Feature Vectors

Calculated 

Index

Fig. 4. For each hash table, there is an unique LSH function gi to determine
the bucket index for insertion.

Query Feature 

Vector

*

LSH 

Functions

ig
LSH 

Functions

ig
LSH 

Functions

ig

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

Hash index Hash Table

Calculated 

Index

Search

Result

Fig. 5. During the feature matching step, a primary searching index is
determined by the index function for each hash table. Then we probe the
primary bucket and its neighboring buckets to achieve better feature matching
accuracy.

is higher than ρ [7]. Fig. 4 indicates the way of inserting
features into a LSH table. There are multiple LSH tables for
feature insertion. Each LSH table bas its unique gi, which
helps to vary the insertion rules to achieve better performance.
Generally speaking, more LSH tables would lead to higher
accuracy of feature matching but more processing time and
memory requirement. The feature searching process is shown
in Fig. 5. After determining the hashing index, we search the
corresponding bucket and its neighboring buckets.

IV. PROPOSED ARCHITECTURE

The proposed architecture for feature matching is shown
in Fig. 6. For matching features, the LSH index is assigned
through index computation. It determine which addresses
should be probed to find all possible feature candidates by
fetching from the on-chip cache and the feature bus. The final
matched result is outputted after sequentially comparing their
feature descriptors. After finish feature matching, we store the



Cache

Table 3Table 3LSH Table1

Index 

Computation

LSH Table 

controller
Feature 

Comparing

Input Feature 

Vector
fi={d1,d2, ,dn}

System Feature Bus

Retrieve 

feature

Matched 

Feature LSH

Fig. 6. The proposed architecture for feature matching.

newly collected feature into the LSH tables. Through the index
calculation procedure, features can be inserted into the feature
pool and waited to be compared by the features extracted from
the next frame.

However, this process requires large memory space to
construct LSH tables. Besides, limited bus bandwidth degrades
the system performance while fetching the off-chip feature
pool. Two major schemes, dynamic table allocation and cache-
based feature searching, are brought up to solve the problems.
The memory usage is significantly reduced and the processing
time is largely accelerated. The following subsections describe
the detailed architecture and operation.

A. Dynamic Table Allocation

In order to avoid huge memory allocation for constructing
hash tables, we adopt the dynamic memory allocation in our
architecture design. We cut the data space in each bucket into
small pieces which are gathered together and controlled by a
dynamic table distributor (DT distributor). The dynamic table
structure is revealed in Fig. 7. The LSH table is composed of
a DT distributor, a bucket, and a DT.

Each calculated LSH table index points to a bucket index.
The bucket contains two information, the number of data
stored in this bucket and the first memory address where we
can find the feature data in DT. Assume that a new feature
is going to be inserted into a certain bucket index, the bucket
check whether there is enough space or not. If there is free
space, the feature is inserted according to the calculated bucket
index. Otherwise, the feature will be inserted after additional
bucket memory allocated by the DT distributor. When the
DT distributor receives a request, an empty DT slot would
be released to the bucket. A DT slot describes N number of
feature index data. The last part of the slot indicates the next
DT slot if there is any descendant.

B. Cache-based Feature Matching

Owing to the bandwidth of the system bus, we need at least
18 cycles to complete a feature transmission to or from the off-
chip memory. For each feature matching procedure, it might
involve hundreds of features loading from off-chip memory
and there are nearly a thousand features waiting to run the
matching procedure. Fortunately, there is a high probability
that different features may retrieve the same feature candidates

Bucket DT contents

000

001

002

N feature index data
Next DT 

address

0000

0001

0002

0003

0004

Bucket 

length

First DT 

address

Dynamic Table (DT)
Bucket index DT address

DT 

Distributor

Fig. 7. Dynamic table structure.

from the feature pool. In order to prevent loading frequently-
matched features several times from off-chip memory, we
propose cache-based feature matching to reduce multiple off-
chip access and relieve the burden of feature bus.

We adopt a 2-way set-associative cache to avoid retrieving
redundant features. Each time we try to find the matched pair
of a feature, the cache is searched first, the feature information,
which is the feature descriptor, will be obtained in 2 cycles.
This is much less than the cycles needed to access feature
information from the off-chip memory. Increasing the hit rate
can avoid the time needed to access the outside memory.

V. ANALYSIS AND SYNTHESIS RESULT

A. Design Analysis

The proposed architecture is synthesized and analyzed in a
90nm CMOS process. We set the specification of the targeted
video input is a 1280× 960 video stream with 30 frames per
second. Approximately 1000 features are extracted for each
frame and stored in the feature pool. We refresh contents
in the feature pool and match features every frame. The
SURF feature adopted here needs 544 bits to represent its 64-
dimension descriptor. In addition, the bandwidth of the feature
bus is set to reasonable 32 bits.

There are two significant factors that determine the system
performance. The first one is the length N of a slot in the
dynamic table. The second one is the cache size S. Large cache
size relieves the bus loading and compensates the penalty
incurred by the cache miss. We examine the factors and decide
the proper setting for the proposed architecture.
• Dynamic table length, N . Larger N means there are more
data can be stored in one DT slot. However, if most of the
buckets are empty or contain only a few data, large N would
lead to excessive memory allocation as shown in Fig. 8(a). In
our profiling, the memory usage meets the minimum when
N = 2. Fig. 8(b) depicts that with increasing N , feature
probing time can be largely reduced. Considering that we want
to reduce the table memory, N = 2 is set in our architecture.
• Cache size, S. In order to avoid penalty due to cache miss,
larger cache memory size would lead to higher hit rate as
shown in Fig. 9(a). Without frequently accessing the off-chip
memory, the total processing time to match all features is
reduced as depicted in Fig. 9(b). Choosing large cache size



TABLE I
COMPARISON BETWEEN CURRENT FEATURE MATCHING METHOD AND THE PROPOSED FEATURE MATCHING ENGINE .

ASSCC2010(KAIST) Proposed feature matching engine
Table number 2 3

Hash function number 5 6
Feature descriptor type SIFT(128) SURF(64)

Main improved idea Huffman coding Dynamic table allocation, Cache
Operating frequency 200MHz 200MHz

Gate Count 255K 410K
Memory 64KB 39.6KB

Matching performance 43.2K queries/s 422K queries/s

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12

N

M
e
m
o
ry
 S
iz
e
 (
b
it
s
)

0

10000

20000

30000

40000

50000

60000

70000

0 2 4 6 8 10 12

N

N
u
m
b
e
r 
o
f 
C
y
c
le
s

(a) (b)

Fig. 8. (a) With the increasing of N , larger memory space is required to
allocate enough space for DT. (b) The latency is reduced significantly by
selecting larger N .

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Cache Size

H
it
 R
a
te
 (
%
)

(a)

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250 300

Cache Size

(b)

L
a
te
n
c
y
 (
c
y
c
le
s
)

Fig. 9. (a) Hit rate increases by allocating large cache memory. (b) Latency
reduction due to cache allocation.

remarkably accelerate the system performance, but memory
usage comes as the cost. We set the baseline that the hit rate
should be higher than 50% to reduce the potential cache miss
punishment. Therefore, 64 entries 2-way set-associative cache
is selected.

B. Synthesis Result

Combined with the two techniques mentioned above, the
proposed architecture provides a high efficiency feature match-
ing engine, which is the most critical part in the video
stabilization system. Synthesis result reveals that the proposed
architecture supports 422K feature queries per second. Com-
pared with state-of-the-art feature matching architecture [10],
the proposed feature matching architecture shows better per-
formance as described in Table I. The proposed architecture
supports more hash functions and hash tables with less on-
chip memory. The matching performance is approximately 10x
higher. With fast feature matching engine, the feature motion
vectors can be calculated much faster and leads to overall
system enhancement.

VI. CONCLUSION

A high performance feature matching architecture is pro-
posed to accelerate the feature-based video stabilization sys-
tem. Locality sensitive hashing is utilized to realize the feature
matching procedure in hardware implementation. To cope with
redundant memory usage and insufficient bandwidth for fea-
ture bus, dynamic hash table allocation and cache-based fea-
ture matching are employed to enhance system performance.
By applying dynamic table allocation, the memory consump-
tion is reduced by more than 90% compared to allocate full
size of hash tables. 2-way set-associative cache is adopted to
reduce frequent feature fetching from the off-chip memory.
More than 50% reduction of the bandwidth requirement of
feature bus is achieved. Through the proposed architecture,
422K feature queries/s allows the video stabilization to achieve
real-time assistance even with high resolution video input.

REFERENCES

[1] Y. M. Liang, H. R. Tyan, S. L. CHang, H. Y. M. Liao, and S. W. Chen,
Video stabilization for camcorder mounted on a moving vehicle, IEEE
Transactions on Vehiclar Technology, vol. 53, pp. 1636-1647, Nov. 2004

[2] H. C. Chang, S. H. Lai, and K. R. Lu, A robust real-time video
stabilization algorithm, Journal of Visual Communication and Image
Representation, vol. 17, pp. 659-673, Jan. 2006.

[3] S. Manigiat and Y. J. Chiu, Block based completion for video stabilization,
in Proc. of Asilomar Conference on Signals, Systems and Computers,
2010, pp. 222-255.

[4] C. Y. Chung and H. H. Chen, Feature-based full-frame image stabiliza-
tion, in Proc. of International Symposium on Multimedia, 2007, pp.
100-106.

[5] Y. G. Ryu, H. C. Roh, and M. J. Chung, Long-time video stabilization
using point-feature trajectory smoothing, In Proc. of IEEE International
Conferene on Consumer Electronics (ICCE), 2011, pp. 189-190.

[6] S. Lee, J. Oh, J. Park, J. Kwon M. Kim, and H. J. Yoo, A 345 mW
heterogeneous many-core processor with an intelligent inference engine
for robust object recognition, IEEE Jounal of Solid-State Circuits, vol.
46, pp. 42-51, Jan. 2010.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, Loaclity-sensitive
hashing schemem based on p-stable distributions, in Proc. of Sympo-
sium on Computational Geometry (SCG), 2004, pp. 253-261.

[8] K. Y. Huang, Y. M. Tsai, C. C. Tsai, and L. G. Chen, Video stabilization
for vehicular applications using SURF-like descriptor and KD-tree,
IEEE International Conference on Image Processing (ICIP), pp. 3517-
3520, 2010.

[9] A. Gionis, P. Indyk, and R. Motwani, Similarity search in high dimensions
via hashing, in Proc. of International Conference on Very Large Data
Bases (VLDB), 1999, pp. 518-529.

[10] S. LEE, J. Kwon, J. Oh, J. Park, and H. J. Yoo, A 92mW 76.8GOPS
vector matching processor with parallel Huffman decoder and query re-
ordering buffer for real-time object recognition, IEEE Asian Solid-State
Circuits Conference (ASSCC), pp. 1-4, 2010.


